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Abstract

Relationships have been established between the average conversion degree and the dissociation

time for polydisperse granular material, taking into account its grain size distribution. It has been

checked in which cases the kinetic curves, obtained by a numerical solution, can be described in

terms of equations R2 and F0.
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Introduction

The first part of our paper was devoted to a description of the macromechanism of

thermal dissociation of solids in terms of known kinetic equations based on a single

grain model [1–10]. In a case of a polydisperse system (with differentiated grain size)

the degree of conversion is different for grains of different initial dimensions (Ri). It

can be described by the following relation:

α α= − −∫1 1[ ( )] ( )R f R Ri

R =0

R=R

d

i

m

(1)

where α – mean value of transformation degree, α(Ri)∈<0;1>, α(Ri) – transformation

degree for grainfraction of initial radius Ri, f(R) – density function for grain size dis-

tribution, characteristic for the given polydisperse system, Rm – final radius of the

coarsest grains present in the reaction system.

The aim of the present part of the paper was to check the possibility of using

other kinetic equations for the description of thermal dissociation processes occurring

in polydispersed systems. As the first for testing we have chosen the following equa-

tion R2:

1 1 1 2− − =( ) /α kt (2)
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often referred to as equation of ‘surface contraction’ or equation of ‘contracting disc’.

Equation (2) has been utilised for description of many thermal dissociation reactions.

It has been derived with assumptions that the process of thermal dissociation of the

type A(st)+B(st)+C(g) proceeds by instantaneous formation of nuclei of the new phase

(reaction product) on the surface of the reacting cylindrical or prism-shaped grain, or

the nuclei of the new phase are not formed on some crystal faces and the migration of

the phase boundary substrate-product (reaction boundary) is considered only for

those crystal planes on which the nuclei have been formed.

The exponent reflexes the number of directions in which the phase boundary

propagates; Eq. (2) described volume contraction if it is 1/3 and surface contraction if

the value is 1/2. If the exponent value is 1 the equation describes the cases where the

phase boundary migrates with a constant rate in one direction. It means that Eq. (2)

becomes Eq. (3) which is equation of zero order F0:

α=kt (3)

This equation describes very well the cases where the reaction surface is con-

stant and it does not shift inside the grain bulk. Such cases occur e.g. during the

desorption of mobile water molecules from that surface and in cases where the sub-

strate molecules are not planar and where the crystallographic factors do not favour a

single direction of migration of the phase boundary. We have checked the possibility

of using the equations R2 and F0 for mathematical description of thermal dissociation

of polydisperse solids for such systems in which the grain size distribution is de-

scribed in terms of either normal or Rosin–Ramler–Sperling distribution i.e. where

the functions of density of the grain size distribution are given, respectively, by the

following equations:
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and the distribuants are expressed by the following relationships:

F R
B

B R RN z z

R

d

z

( ) exp[ ( ) ]= − −
−∞
∫π

1 2 (6)

Φ ℜ = − −( ) exp( )R R1 z

n (7)

In the above equations: δ – variance, R – mean grain radius, B
R

=
2 2δ

, R
R

R
z = .
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Formulation of the problem

The dimensionless variable R R Rz = / is inserted into Eqs (2) and (3) and maximum

time of transformation is calculated for a fraction of radius Ri. From Eqs (2) and (3) it

follows that the maximum time of transformation of i-th fraction for α=1 is tm,i.

Assuming in Eq. (2) k=ki/Ri one obtains for a fraction of Ri and α=1:

t
R

k

R R

k
m,i

i

i

z,i

i

= = (8)

hence:

θ k,i

1,i m,i

z,i= =
k t

R
R (9)

An analogous procedure is applied for Eq. (3).

The transformed Eq. (2) and the density function fN(R) are inserted into Eq. (1)

and assumption is made that dR=RdRz=Rdθ, hence:
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Assuming R =1we obtain θk,i=kitm,i hence:

α θ( ) ( )R i = − −1 1 2 (11)

An analogous procedure on Eq. (3) gives:

α θ( )R i = (12)

and Eq. (2) assumes the form:
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and Eq. (3) becomes:

α θ
δ π δ

θ
θ

= − − −
−





























1 1
1

2

1

2

1
2

1

( ) exp
R

d

θm

∫











(14)

Equations (13) and (14) comprise the terms1 2/δ π and − −1 2 1 2/ [( )/ ]R δ . We can

introduce a dimensionless variable B=1 2 2/ δ in the former and assume R =1.

Hence we obtain:

δ=
1

2B
(15)
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For δ2 the latter equation assumes the form:
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After introduction of relationships (15) and (16) to Eqs (13) and (14), respec-

tively, and for d d zR R R R= = θ one obtains in the case of Eq. (2) for the normal distri-

bution and Rosin–Rammler–Sperling distributions, respectively:
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and for Eq. (3):
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Calculations, results and discussion

Equations (17), (18), (19) and (20) have no analytical solutions.

The following method has been applied for performing numerical calculations

in the language Turbo Pascal 6.0:

The calculations were performed for the values of B and θ in the case of normal

distribution and for n and θ in the case of Rosin–Rammler–Sperling distribution.

The values of α for B∈<0.001;1000> and for θ∈<0.001;2> were calculated from

Eqs (17) and (19) . After necessary search among B values we have those for which

the kinetic curves begin at the origin as in Figs 1a and 1b.

The kinetic curves determined have been described in terms of Eqs (2) and (3).

The results of calculations are given in Figs 3a and 3b.

In the same way the values of α for n∈<0.001;1> and θ∈<0.001;2> were calcu-

lated from Eqs (18) and (20) (Figs 5a and 5b).

The kinetic curves found were described in terms of Eqs (2) and (3). The results

of calculations are given in Figs 6a and 6b.

The kinetic curves for normal distribution starting at the origin and obtained for

selected values of B=5; 6; 7; 8; 9; 10 in terms of Eq. (2) and for values of B=4; 5; 6; 7;
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8; 9 by Eq. (3) are shown in Figs 2a, 2b, 4a and 4b. Analogous curves for the case of

Rosin–Rammler–Sperling distribution were obtained for Eq. (2) if n∈<0.041:0.05>,

and for Eq. (3) if n∈<0.04:0.05>. The obtained results are shown in Figs 7a and 7b.

The description of a kinetics in terms of Eq. (2) with a condition:

B
R

= ≥
2

22
5

δ
(21)

means that for R =1the mean deviation cannot exceed 0.316 (δ≤0.316), and a descrip-

tion by means of Eq. (3) with a condition:

B
R

= ≥
2

22
4

δ
(22)

means that for R =1the mean deviation cannot exceed 0.3535 (δ≤0.3535).

Hence a mathematical description of the processes under consideration in terms

of Eqs (2) and (3) becomes possible if the value of R remains within the limits

05. R R≤ ≤1.5R i.e. if the variability range of R is relatively small.

In the case of polydisperse solid material with Rosin–Rammler–Sperling distri-

bution the nature of the distribution depends on the value of n, and the distribuants
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Fig. 1 Kinetic curves: values for B∈<3;11> : a – for Eq. R2, b – for Eq. F0
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Fig. 2 Kinetic curves for selected values of B∈<5;10>: a – in Eq. R2 and B∈<4;9>: b – in Eq. F0

Fig. 3 Kinetic curves for the values of B∈<3;11>, calculated from : a – Eq. R2, b – Eq. F0

Fig. 4 Kinetic curves calculated for Eqs R2 and F0: a – for B∈<5;10>, b – for B∈<4;9>
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Fig. 5 Kinetic curves for the values of n∈<0.04;0.05>: a – for Eq. R2, b – for Eq. F0

Fig. 6 Kinetic curves for the values of n∈<0.041;0.05> and n∈<0.041;0.05>for the
equations: a – R2, b – F0

Fig. 7 Logarithms of Eqs R2 and F0: a – for n∈<0.041;0.05>, b – for n∈<0.04;0.05>
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Fig. 8 Density functions and distribuants of Eq. R2: a – for normal distribution, b – for
Rosin–Rammler–Sperling distribution
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Fig. 9 Density functions and distribuants of Eq. F0: a – for normal distribution, b – for
Rosin–Rammler–Sperling distribution



and density functions accept different forms for each individual value of n (Figs 8a,

8b, 9a and 9b).

Conclusions

Equations (2) and (3) describe very well the process of thermal dissociation of

polydisperse solid materials with normal grain size distribution for the values of B≥5

– Eq. (2), and for values of B≥4 – Eq. (3). For polydisperse materials characterised by

Rosin–Rammler–Sperling distribution the description is possible only in a very nar-

row range of θ between θ1= 0.001 and θ=0.08096 in the case of Eq. R2, and between

θ1=0.001 and θ=0.070965 in the case of Eq. F0. It means that these equations can

only be used for very small ranges of variability of α.

Symbols

K [mm s–1]

B [mm2]

R, R [mm]

Rz, θ [–]
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